0. Data Lake Analytics(简称DLA)介绍
数据湖(Data Lake)是时下大数据行业热门的概念:。基于数据湖做分析,可以不用做任何ETL、数据搬迁等前置过程,实现跨各种异构数据源进行大数据关联分析,从而极大的节省成本和提升用户体验。关于Data Lake的概念。
终于,阿里云现在也有了自己的数据湖分析产品:
可以点击申请使用(目前公测阶段还属于邀测模式),体验本教程分析OTS数据之旅。 产品文档:1. ETL介绍
ETL()就是Extract、Transfrom、Load即抽取、转换、加载,是传统数仓和大数据的重要工具。
抽取:就是从源系统抽取需要的数据,这些源系统是同构或异构的:比如Excel表格、XML文件、关系型数据库。
转换:源系统的数据按照分析目的,转换成目标系统要求的格式,或者做数据清洗和数据加工。 加载:把转换后的数据装载到目标数据库,作为联机分析、数据挖掘、数据展示的基础。整个ETL过程就像是在源系统和目标系统之间构建一个管道,数据在这个管道里源源不断的流动。
2. DLA与ETL
Data Placement Optimization(数据摆放优化)是目前云平台上的业务系统的主流架构方向和思路。架构师们会从读写性能、稳定性、强一致性、成本、易用性、开发效率等方面来考量不同存储引擎给业务上带来的好处,从而实现整个业务系统的完美的平衡状态。
而这种跨异构数据源之间的数据搬迁,却不是一件容易的事情。很多ELT工具基本上属于框架级别,需要自己开发不少的辅助工具;同时表达能力也较弱,无法满足很多场景;另外对异构数据源的抽象和兼容性也不是那么完美。
反观DLA,无论从哪方面来看,DLA都完美的契合ETL的需求场景。下图是DLA的简易架构图,DLA一开始就是基于“MPP计算引擎+存储计算分离+弹性高可用+异构数据集源”等架构原则来设计的,支持各种异构数据源读写是DLA的核心目标!
通过连接异构数据源来执行select + join + subQuery等逻辑实现Extract,通过Filter+ Project + Aggregation + Sort + Functions等实现数据流转换和映射Transform,而通过insert实现Load,下面是一个例子:
--基本格式insert into target_table (col1, col2, col3, ....) --需要导入的列以及列的顺序select c1, c2, c3, .... --需要与导入列的类型兼容,顺序要确认清楚from ... --可以是任何你想要查询的数据目标where ...--下面是一个例子insert into target_table (id, name, age) select s1.pk1, s2.name, s1.age from source_table1 s1join source_table2 s2on s1.sid = s2.sidwhere s1.xxx = 'yyy'
下面我们就尝试往不同的数据源导入数据吧。
3. 实际测试(以TableStore:为例)
-
准备DLA账号(已有测试账号)
- 测试集群:上海region;
- 账号账号:DLA测试账号;
- 准备两个来源表(两个TPC-H的OSS表,customer和nation),用来做join和数据查询;
- 准备一个TableStore()的目标表;
- 执行导入SQL,写入数据后校验结果;
a)两个来源表定义:
mysql> show create database tpch_50x_text;+---------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Database | Create Database |+---------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| tpch_50x_text | CREATE DATABASE `tpch_50x_text`WITH DBPROPERTIES ( catalog = 'hive', location = 'oss://${您的bucket}/datasets/tpch/50x/text_date/')COMMENT '' |+---------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.02 sec)mysql> show tables;+------------+| Table_Name |+------------+| customer || nation |+------------+2 rows in set (0.03 sec)mysql> show create table customer;+----------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Table | Create Table |+----------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| customer | CREATE EXTERNAL TABLE `tpch_50x_text`.`customer` ( `c_custkey` int, `c_name` string, `c_address` string, `c_nationkey` int, `c_phone` string, `c_acctbal` double, `c_mktsegment` string, `c_comment` string)ROW FORMAT DELIMITED FIELDS TERMINATED BY '|'STORED AS `TEXTFILE`LOCATION 'oss://${您的bucket}/datasets/tpch/50x/text_date/customer_text' |+----------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.90 sec)mysql> show create table nation;+------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Table | Create Table |+------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| nation | CREATE EXTERNAL TABLE `tpch_50x_text`.`nation` ( `n_nationkey` int, `n_name` string, `n_regionkey` int, `n_comment` string)ROW FORMAT DELIMITED FIELDS TERMINATED BY '|'STORED AS `TEXTFILE`LOCATION 'oss://${您的bucket}/datasets/tpch/50x/text_date/nation_text' |+------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.73 sec)
b)准备TableStore的库和表
## 建库mysql> show create database etl_ots_test;+--------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Database | Create Database |+--------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| etl_ots_test | CREATE DATABASE `etl_ots_test`WITH DBPROPERTIES ( catalog = 'ots', location = 'https://${您的instance}.cn-shanghai.ots-internal.aliyuncs.com', instance = '${您的instance}')COMMENT '' |+--------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.02 sec)## 使用库mysql> use etl_ots_test;Database changed## 建表mysql> show create table test_insert;+-------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Table | Create Table |+-------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| test_insert | CREATE EXTERNAL TABLE `test_insert` ( `id1_int` int NOT NULL COMMENT '客户id主键', `c_address` varchar(20) NULL COMMENT '客户的地址', `c_acctbal` double NULL COMMENT '客户的account balance', PRIMARY KEY (`id1_int`))COMMENT '' |+-------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.03 sec)
以下是实际数据的截图:
c)开始导入数据,确保导入字段顺序和类型兼容性:
## 检查数据,都是空的mysql> select * from etl_ots_test.test_insert;Empty set (0.31 sec)
mysql> use tpch_50x_text;Database changed## 查询下nation数据,其中CANADA的nationkey是3,后续要找这个数据mysql> select n_nationkey, n_name from nation;+-------------+----------------+| n_nationkey | n_name |+-------------+----------------+| 0 | ALGERIA || 1 | ARGENTINA || 2 | BRAZIL || 3 | CANADA || 4 | EGYPT || 5 | ETHIOPIA || 6 | FRANCE || 7 | GERMANY || 8 | INDIA || 9 | INDONESIA || 10 | IRAN || 11 | IRAQ || 12 | JAPAN || 13 | JORDAN || 14 | KENYA || 15 | MOROCCO || 16 | MOZAMBIQUE || 17 | PERU || 18 | CHINA || 19 | ROMANIA || 20 | SAUDI ARABIA || 21 | VIETNAM || 22 | RUSSIA || 23 | UNITED KINGDOM || 24 | UNITED STATES |+-------------+----------------+25 rows in set (0.37 sec)## 查询下customer数据,我们只关注nationkey=3以及c_mktsegment='BUILDING'的数据mysql> select count(*) from customer where c_nationkey = 3 and c_mktsegment = 'BUILDING';+----------+| count(*) |+----------+| 60350 |+----------+1 row in set (0.66 sec)## 查询下customer数据,我们只关注nationkey=3以及c_mktsegment='BUILDING'的数据mysql> select * from customer where c_nationkey = 3 and c_mktsegment = 'BUILDING' order by c_custkey limit 3;+-----------+--------------------+-------------------------+-------------+-----------------+-----------+--------------+----------------------------------------------------------------------------------------------------+| c_custkey | c_name | c_address | c_nationkey | c_phone | c_acctbal | c_mktsegment | c_comment |+-----------+--------------------+-------------------------+-------------+-----------------+-----------+--------------+----------------------------------------------------------------------------------------------------+| 13 | Customer#000000013 | nsXQu0oVjD7PM659uC3SRSp | 3 | 13-761-547-5974 | 3857.34 | BUILDING | ounts sleep carefully after the close frays. carefully bold notornis use ironic requests. blithely || 27 | Customer#000000027 | IS8GIyxpBrLpMT0u7 | 3 | 13-137-193-2709 | 5679.84 | BUILDING | about the carefully ironic pinto beans. accoun || 40 | Customer#000000040 | gOnGWAyhSV1ofv | 3 | 13-652-915-8939 | 1335.3 | BUILDING | rges impress after the slyly ironic courts. foxes are. blithely |+-----------+--------------------+-------------------------+-------------+-----------------+-----------+--------------+----------------------------------------------------------------------------------------------------+3 rows in set (0.78 sec)
导入之前我们想清楚需求:把国家是'CANADA'的,客户的market segmentation为'BUILDING'的客户找到,然后对c_custkey排序,选择前10条数据,然后选择他们的c_custkey、c_address、c_acctbal三列,清晰到OTS的test_insert表中,以备后续使用。
##先查询下数据,看看有几条数据mysql> select c.c_custkey, c.c_address, c.c_acctbal -> from tpch_50x_text.customer c -> join tpch_50x_text.nation n -> on c.c_nationkey = n.n_nationkey -> where n.n_name = 'CANADA' -> and c.c_mktsegment = 'BUILDING' -> order by c.c_custkey -> limit 10;+-----------+--------------------------------+-----------+| c_custkey | c_address | c_acctbal |+-----------+--------------------------------+-----------+| 13 | nsXQu0oVjD7PM659uC3SRSp | 3857.34 || 27 | IS8GIyxpBrLpMT0u7 | 5679.84 || 40 | gOnGWAyhSV1ofv | 1335.3 || 64 | MbCeGY20kaKK3oalJD,OT | -646.64 || 255 | I8Wz9sJBZTnEFG08lhcbfTZq3S | 3196.07 || 430 | s2yfPEGGOqHfgkVSs5Rs6 qh,SuVmR | 7905.17 || 726 | 4w7DOLtN9Hy,xzZMR | 6253.81 || 905 | f iyVEgCU2lZZPCebx5bGp5 | -600.73 || 1312 | f5zgMB4MHLMSHaX0tDduHAmVd4 | 9459.5 || 1358 | t23gsl4TdVXqTZha DioEHIq5w7y | 5149.23 |+-----------+--------------------------------+-----------+10 rows in set (1.09 sec)##开始导入mysql> insert into etl_ots_test.test_insert (id1_int ,c_address, c_acctbal) -> select c.c_custkey, c.c_address, c.c_acctbal -> from tpch_50x_text.customer c -> join tpch_50x_text.nation n -> on c.c_nationkey = n.n_nationkey -> where n.n_name = 'CANADA' -> and c.c_mktsegment = 'BUILDING' -> order by c.c_custkey -> limit 10;+------+| rows |+------+| 10 |+------+1 row in set (2.14 sec)## 验证结果,没有问题:mysql> select * from etl_ots_test.test_insert;+---------+--------------------------------+-----------+| id1_int | c_address | c_acctbal |+---------+--------------------------------+-----------+| 13 | nsXQu0oVjD7PM659uC3SRSp | 3857.34 || 27 | IS8GIyxpBrLpMT0u7 | 5679.84 || 40 | gOnGWAyhSV1ofv | 1335.3 || 64 | MbCeGY20kaKK3oalJD,OT | -646.64 || 255 | I8Wz9sJBZTnEFG08lhcbfTZq3S | 3196.07 || 430 | s2yfPEGGOqHfgkVSs5Rs6 qh,SuVmR | 7905.17 || 726 | 4w7DOLtN9Hy,xzZMR | 6253.81 || 905 | f iyVEgCU2lZZPCebx5bGp5 | -600.73 || 1312 | f5zgMB4MHLMSHaX0tDduHAmVd4 | 9459.5 || 1358 | t23gsl4TdVXqTZha DioEHIq5w7y | 5149.23 |+---------+--------------------------------+-----------+10 rows in set (0.27 sec)
d)注意点:
虽然有ETL工具快速导入导出,但也有些问题需要注意的,比如:
- 如果导入任务时间太长,请走异步模式,否则连接断开可能会影响任务正常运行;
- TableStore目前的insert是根据主键覆盖,主键不会去重判断的,请务必不能对你正常的数据表做插入;
- 目前DLA和TableStore的事务能力还不够,可能会出现中断,已导入的数据不会清楚,需要自行清理;
- 列的个数和列的类型,需要自己对齐保障,否则会报错;
4. 其他数据源导入
整个过程是不是很简单?是不是想要导入其他场景的数据源?对DLA而言,底层任何数据源都以相同方式处理,只要确保其他数据源的库、表在DLA中正常创建,就可以正常的读写,实现ETL啦!赶紧试试吧!
其他相关的文档:
- 使用Data Lake Analytics从OSS清洗数据到AnalyticDB:
- DLA相关技术文档:
- Data Lake Analytics使用场景:
- OLAP on TableStore——基于Data Lake Analytics的Serverless SQL大数据分析
- 使用Data Lake Analytics 分析OSS数据:
- Data Lake Analytics数据库的连接方式:
- Data Lake Analytics分析RDS数据:
作者:
本文为云栖社区原创内容,未经允许不得转载。